Evolutionary computationIn computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character. In evolutionary computation, an initial set of candidate solutions is generated and iteratively updated.
Algorithme évolutionnistevignette|redresse=1.2|Un algorithme évolutionnaire utilise itérativement des opérateurs de sélections (en bleu) et de variation (en jaune). i : initialisation, f(X) : évaluation, ? : critère d'arrêt, Se : sélection, Cr : croisement, Mu : mutation, Re : remplacement, X* : optimum. Les algorithmes évolutionnistes ou algorithmes évolutionnaires (evolutionary algorithms en anglais), sont une famille d'algorithmes dont le principe s'inspire de la théorie de l'évolution pour résoudre des problèmes divers.
Fitness functionA fitness function is a particular type of objective function that is used to summarise, as a single figure of merit, how close a given design solution is to achieving the set aims. Fitness functions are used in evolutionary algorithms (EA), such as genetic programming and genetic algorithms to guide simulations towards optimal design solutions. In the field of EAs, each design solution is commonly represented as a string of numbers (referred to as a chromosome).
Population model (evolutionary algorithm)The population model of an evolutionary algorithm (EA) describes the structural properties of its population to which its members are subject. A population is the set of all proposed solutions of an EA considered in one iteration, which are also called individuals according to the biological role model. The individuals of a population can generate further individuals as offspring with the help of the genetic operators of the procedure. The simplest and widely used population model in EAs is the global or panmictic model, which corresponds to an unstructured population.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Évolution (biologie)En biologie, l’évolution est la transformation du monde vivant au cours du temps, qui se manifeste par des changements phénotypiques des organismes à travers les générations. Ces changements généralement graduels (mais pouvant être rapides ou lents) peuvent aboutir, à partir d’une seule espèce (dite « espèce-mère »), à la formation de nouvelles variétés périphériques devenant progressivement des « espèces-filles ». Inversement, la fusion de deux lignées par hybridation ou par symbiogenèse entre deux populations d'espèces différentes peuvent produire une troisième espèce nouvelle.
Paysage adaptatifLe paysage adaptatif (ou paysage de fitness, fitness landscape en anglais) est un outil utilisé en biologie évolutive pour visualiser les relations entre des génotypes et le succès reproductif. Le paysage adaptatif est une représentation de la fitness d’organismes, d’espèces ou de populations sous forme d’une carte topographique. Cette fitness, ou valeur sélective, est une mesure relative de la survie et de la reproduction. vignette|Croquis d'un paysage de fitness.
Robotique molleLa robotique molle () est un domaine de la robotique. Ce domaine traite des « robots mous » incluant certains types de drones, et construits en matériaux ou structures souples, élastiques ou déformables tels que le silicone, le plastique, le caoutchouc et autres polymères, les tissus, etc., ou des pièces mécaniques déformables utilisées en robotique, par exemple les ressorts, les élastiques ou les absorbeurs de chocs ou de vibrations.
Robotvignette|Atlas (2013), robot androïde de Boston Dynamics vignette|Bras manipulateurs dans un laboratoire (2009) vignette|NAO (2006), robot humanoïde éducatif d'Aldebaran Robotics vignette|DER1 (2005), un actroïde d'accueil vignette|Roomba (2002), un robot ménager Un robot est un dispositif mécatronique (alliant mécanique, électronique et informatique) conçu pour accomplir automatiquement des tâches imitant ou reproduisant, dans un domaine précis, des actions humaines.
Ordinateur personnelL'ordinateur personnel (en anglais : personal computer ou PC) se confond aujourd'hui avec le micro-ordinateur ou ordinateur individuel : c'est un ordinateur destiné à l'usage d'une personne, de prix accessible et dont les dimensions sont assez réduites pour tenir sur un bureau. La première machine appelée micro-ordinateur est le Micral N, breveté en 1973 par le Français François Gernelle. Toutefois, à cette époque, on pouvait déjà considérer comme ordinateurs personnels les mini-ordinateurs diffusés au cours des années 1960, ainsi que le premier ordinateur de bureau Olivetti Programma 101 commercialisé en 1965.