Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Spectrométrie photoélectronique Xvignette|upright=1.4|Machine XPS avec un analyseur de masse (A), des lentilles électromagnétiques (B), une chambre d'ultra-vide (C), une source de rayon X (D) et une pompe à vide (E) La spectrométrie photoélectronique X, ou spectrométrie de photoélectrons induits par rayons X (en anglais, X-Ray photoelectron spectrometry : XPS) est une méthode de spectrométrie photoélectronique qui implique la mesure des spectres de photoélectrons induits par des photons de rayon X.
Structure chimiquevignette|Représentation de la structure chimique de l'acide acétique. L'hydrogène est en blanc, le carbone est en gris et l'oxygène est en rouge. La structure chimique d'un système réfère à la fois à sa topologie moléculaire, à sa géométrie (géométrie moléculaire ou groupe d'espace pour un cristal) et à sa structure électronique. La topologie moléculaire désigne l’enchaînement des atomes et des liaisons qui les lient sans prendre en compte la géométrie (longueur des liaisons, angles de valence, angles dièdres).
Spectroscopie photoélectroniqueLa spectroscopie photoélectronique (photoelectron spectroscopy, PES) ou spectroscopie de photoémission (photoemission spectroscopy) est un ensemble de méthodes spectroscopiques basées sur la détection d'électrons émis par des molécules après le bombardement de celle-ci par une onde électromagnétique monochromatique. Cette spectroscopie fait partie des méthodes de spectroscopie électronique. Elle est utilisée pour mesurer l'énergie de liaison des électrons dans la matière, c'est-à-dire à sonder les états occupés.
Diffusion RamanLa diffusion Raman, ou effet Raman, est un phénomène optique découvert indépendamment en 1928 par les physiciens Chandrashekhara Venkata Râman et Leonid Mandelstam. Cet effet consiste en la diffusion inélastique d'un photon, c'est-à-dire le phénomène physique par lequel un milieu peut modifier légèrement la fréquence de la lumière qui y circule. Ce décalage en fréquence correspond à un échange d'énergie entre le rayon lumineux et le milieu. Cet effet physique fut prédit par Adolf Smekal en 1923.
Spectroscopie des rayons XLa spectroscopie des rayons X rassemble plusieurs techniques de caractérisation spectroscopique de matériaux par excitation par rayons X. Trois familles de techniques sont le plus souvent utilisées. Selon les phénomènes mis en jeu, on distingue trois classes : L'analyse se fait par l'une des deux méthodes suivantes : analyse dispersive en énergie (Energy-dispersive x-ray analysis (EDXA) en anglais) ; analyse dispersive en longueur d'onde (Wavelength dispersive x-ray analysis (WDXA) en anglais).
Self-assembled monolayerSelf-assembled monolayers (SAM) of organic molecules are molecular assemblies formed spontaneously on surfaces by adsorption and are organized into more or less large ordered domains. In some cases molecules that form the monolayer do not interact strongly with the substrate. This is the case for instance of the two-dimensional supramolecular networks of e.g. perylenetetracarboxylic dianhydride (PTCDA) on gold or of e.g. porphyrins on highly oriented pyrolitic graphite (HOPG).
Magnitude (astronomie)vignette|Sources lumineuses de différentes magnitudes. En astronomie, la magnitude est une mesure sans unité de la luminosité d'un objet céleste dans une bande de longueurs d'onde définie, souvent dans le spectre visible ou infrarouge. Une détermination imprécise mais systématique de la grandeur des objets est introduite dès le par Hipparque. L'échelle est logarithmique et définie de telle sorte que chaque pas d'une grandeur change la luminosité d'un facteur 2,5.
Sonde fluorescentevignette|Utilisation de sondes fluorescentes pour être capable de visualiser des structures qui sont, en temps normal, invisibles de par leur taille. Cellules endothéliales vues au microscope. En bleu, noyaux marqués au DAPI. En vert, microtubules marqués par un anticorps couplé à un fluorochrome. En rouge, actine marquée à la phalloïdine. Une sonde fluorescente est une molécule fluorescente que l'on ajoute à un milieu (cellule ou monocouche, par exemple) pour mettre en évidence certaines zones et/ou pour étudier les propriétés physiques d'un milieu.
Protéine fluorescente vertevignette|Aequorea victoria. La protéine fluorescente verte (souvent abrégé GFP, de l'anglais « Green Fluorescent Protein ») est une protéine ayant la propriété d'émettre une fluorescence de couleur verte. Issue d'une méduse (Aequorea victoria), cette protéine est intrinsèquement fluorescente sous l'action d'une enzyme, l'aequoréine, une luciférase qui agit en présence de calcium. Son gène peut être fusionné in-vitro au gène d'une protéine que l'on souhaite étudier.