Analyse statique de programmesEn informatique, la notion d’analyse statique de programmes couvre une variété de méthodes utilisées pour obtenir des informations sur le comportement d'un programme lors de son exécution sans réellement l'exécuter. C'est cette dernière restriction qui distingue l'analyse statique des analyses dynamiques (comme le débugage ou le profiling) qui s'attachent, elles, au suivi de l’exécution du programme. L’analyse statique est utilisée pour repérer des erreurs formelles de programmation ou de conception et pour déterminer la facilité ou la difficulté à maintenir le code.
Calcul des prédicatsEn logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
Designvignette|Chaise de Charles Rennie Mackintosh, 1897. Le design, le stylisme ou la stylique est une activité de création souvent à vocation industrielle ou commerciale, pouvant s’orienter vers les milieux sociaux, politiques, scientifiques et environnementaux. Le but premier du design est d’inventer, d’améliorer ou de faciliter l’usage ou le processus d’un élément ayant à interagir avec un produit ou un service matériel ou virtuel.
Geometry of interactionThe Geometry of Interaction (GoI) was introduced by Jean-Yves Girard shortly after his work on linear logic. In linear logic, proofs can be seen as various kinds of networks as opposed to the flat tree structures of sequent calculus. To distinguish the real proof nets from all the possible networks, Girard devised a criterion involving trips in the network. Trips can in fact be seen as some kind of operator acting on the proof.
Systems scienceSystems science, also referred to as systems research, or, simply, systems, is a transdisciplinary field concerned with understanding systems—from simple to complex—in nature, society, cognition, engineering, technology and science itself. The field is diverse, spanning the formal, natural, social, and applied sciences. To systems scientists, the world can be understood as a system of systems.
Système de systèmesUn système de systèmes est un système constitué de systèmes constituants hétérogènes. Un système de système a des capacités plus grandes que la somme des fonctions de ses systèmes constituants. Un système de système se caractérise par: Une indépendance opérationnelle de ses systèmes constituants Une indépendance managériale de ses systèmes Une distribution géographique marquée de ses systèmes constituants Un processus de développement incrémental La présence de comportements émergeant Un système de contrôle
GénéricitéEn programmation, la généricité (ou programmation générique), consiste à définir des algorithmes identiques opérant sur des données de types différents. On définit de cette façon des procédures ou des types entiers génériques. On pourrait ainsi programmer une pile, ou une procédure qui prend l'élément supérieur de la pile, indépendamment du type de données contenues. C'est donc une forme de polymorphisme, le « polymorphisme de type » dit aussi « paramétrage de type » : en effet, le type de donnée général (abstrait) apparaît comme un paramètre des algorithmes définis, avec la particularité que ce paramètre-là est un type.
Ingénierie des systèmesL'ingénierie des systèmes ou ingénierie système est une approche scientifique interdisciplinaire, dont le but est de formaliser et d'appréhender la conception et la validation de systèmes complexes. L'ingénierie des systèmes a pour objectif de maîtriser et de contrôler la conception de systèmes dont la complexité ne permet pas le pilotage simple. Par système, on entend un ensemble d'éléments humains ou matériels en interdépendance les uns les autres et qui inter-opèrent à l'intérieur de frontières ouvertes ou non sur l'environnement.
Logique des graphesDans les domaines mathématiques de la théorie des graphes et de la théorie des modèles finis, le logique des graphes traite de la spécification formelle de propriétés de graphe en utilisant des proposition de la logique mathématique. Il existe plusieurs variantes suivant les types d'opérations logiques qui peuvent être utilisées dans ces propositions. La logique du premier ordre des graphes concerne les propositions dans lesquelles les variables et les prédicats concernent les sommets et les arêtes individuels d'un graphe, tandis que la logique monadique de graphe du second ordre permet une quantification sur des ensembles de sommets ou d'arêtes.
Logique linéairevignette|Arbre de résolution linéaire En logique mathématique et plus précisément en théorie de la démonstration, la logique linéaire est un système formel inventé par le logicien Jean-Yves Girard en 1987. Du point de vue logique, la logique linéaire décompose et analyse les logiques classique et intuitionniste. Du point de vue calculatoire, elle est un système de type pour le lambda-calcul permettant de spécifier certains usages des ressources. La logique classique n'étudie pas les aspects les plus élémentaires du raisonnement.