Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper presents an overview of the first edition of HIPE (Identifying Historical People, Places and other Entities), a pioneering shared task dedicated to the evaluation of named entity processing on historical newspapers in French, German and English. ...
Recent advances in computer vision have made accurate, fast and robust measurement of animal behavior a reality. In the past years powerful tools specifically designed to aid the measurement of behavior have come to fruition. Here we discuss how capturing ...
We present an extensive evaluation of a wide variety of promising design patterns for automated deep-learning (AutoDL) methods, organized according to the problem categories of the 2019 AutoDL challenges, which set the task of optimizing both model accura ...
Deep learning algorithms are responsible for a technological revolution in a variety oftasks including image recognition or Go playing. Yet, why they work is not understood.Ultimately, they manage to classify data lying in high dimension – a feat generical ...
Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface s ...
The current information landscape is characterised by a vast amount of relatively semantically homogeneous, when observed in isolation, data silos that are, however, drastically semantically fragmented when considered as a whole. Within each data silo, inf ...
Federated learning is a useful framework for centralized learning from distributed data under practical considerations of heterogeneity, asynchrony, and privacy. Federated architectures are frequently deployed in deep learning settings, which generally giv ...
This paper presents an extended overview of the first edition of HIPE (Identifying Historical People, Places and other Entities), a pioneering shared task dedicated to the evaluation of named entity processing on historical newspapers in French, German and ...
inspectors that walk over the track and check the defects on the rail surface, fasteners and sleepers. In the case of concrete sleepers, rail inspectors classify defects according to their size and occurrence over 20 sleepers. The manual inspection is erro ...
The curation of neuroscience entities is crucial to ongoing efforts in neuroinformatics and computational neuroscience, such as those being deployed in the context of continuing large-scale brain modelling projects. However, manually sifting through thousa ...