Algorithme gloutonUn algorithme glouton (greedy algorithm en anglais, parfois appelé aussi algorithme gourmand, ou goulu) est un algorithme qui suit le principe de réaliser, étape par étape, un choix optimum local, afin d'obtenir un résultat optimum global. Par exemple, dans le problème du rendu de monnaie (donner une somme avec le moins possible de pièces), l'algorithme consistant à répéter le choix de la pièce de plus grande valeur qui ne dépasse pas la somme restante est un algorithme glouton.
Politique de prixLa politique de prix est un ensemble de décisions et d'actions réalisées pour déterminer la structure et le niveau de la tarification des biens et services proposés aux clients conquis ou à conquérir. C'est l'un des constituants du marketing mix que sont par exemple la politique de produit, la politique de prix, la politique de distribution et la politique de communication. Elle est la traduction concrète, à un niveau subordonné, d'éléments de plus haut niveau que sont la vision et la stratégie générale de l'entreprise ainsi que la politique générale d'entreprise.
Algorithme A*En informatique, plus précisément en intelligence artificielle, l'algorithme de recherche A* (qui se prononce A étoile, ou A star en anglais) est un algorithme de recherche de chemin dans un graphe entre un nœud initial et un nœud final tous deux donnés. En raison de sa simplicité il est souvent présenté comme exemple typique d'algorithme de planification, domaine de l'intelligence artificielle.
Admissible heuristicIn computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path. It is related to the concept of consistent heuristics. While all consistent heuristics are admissible, not all admissible heuristics are consistent. An admissible heuristic is used to estimate the cost of reaching the goal state in an informed search algorithm.
Business Process ManagementLe Business Process Management (BPM), ou Gestion des Processus Métiers, permet d’avoir une vue d’ensemble de processus métiers de l’organisation et de leurs interactions pour les optimiser et les automatiser autant que possible. Pour ce faire, il faut analyser le fonctionnement réel de l'entreprise afin de le modéliser informatiquement, par exemple avec le formalisme BPMN et les outils associés. Dans une deuxième étape, les processus automatisés, même partiellement, font l'objet d'un monitoring (Cf.
HeuristiqueL'heuristique ou euristique (du grec ancien εὑρίσκω, heuriskô, « je trouve ») est en résolvant des problèmes à partir de connaissances incomplètes. Ce type d'analyse permet d'aboutir en un temps limité à des solutions acceptables. Celles-ci peuvent s'écarter de la solution optimale. Pour Daniel Kahneman, c'est une procédure qui aide à trouver des réponses adéquates, bien que souvent imparfaites à des questions difficiles. Ce système empirique inclut notamment la méthode essai-erreur ou l'analyse statistique des échantillons aléatoires.
MétaheuristiqueUne métaheuristique est un algorithme d’optimisation visant à résoudre des problèmes d’optimisation difficile (souvent issus des domaines de la recherche opérationnelle, de l'ingénierie ou de l'intelligence artificielle) pour lesquels on ne connaît pas de méthode classique plus efficace. Les métaheuristiques sont généralement des algorithmes stochastiques itératifs, qui progressent vers un optimum global (c'est-à-dire l'extremum global d'une fonction), par échantillonnage d’une fonction objectif.