Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Power-line communications are employed in home networking to provide easy and high-throughput connectivity. The IEEE 1901, the MAC protocol for power-line networks, employs a CSMA/CA protocol similar to that of 802.11, but is substantially more complex, which probably explains why little is known about its performance. One of the key differences between the two protocols is that whereas 802.11 only reacts upon collisions, 1901 also reacts upon several consecutive transmissions and thus can potentially achieve better performance by avoiding unnecessary collisions. In this paper, we propose a model for the 1901 MAC. Our analysis reveals that the default configuration of 1901 does not fully exploit its potential and that its performance degrades with the number of stations. Based on analytical reasoning, we derive a configuration for the parameters of 1901 that drastically improves throughput and achieves optimal performance without requiring the knowledge of the number of stations in the network. In contrast, 802.11 requires knowing the number of contending stations to provide a similar performance, which is unfeasible for realistic traffic patterns. We confirm our results and enhancement with testbed measurements, by implementing the 1901 MAC protocol on WiFi hardware.
Giancarlo Ferrari Trecate, Michele Tucci
Patrick Thiran, Sébastien Christophe Henri