Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Règle de HebbLa règle de Hebb, théorie de Hebb, postulat de Hebb ou théorie des assemblées de neurones a été établie par Donald Hebb en 1949. Elle est à la fois utilisée comme hypothèse en neurosciences et comme concept dans les réseaux neuronaux en mathématiques. En 1950, un manuscrit de Sigmund Freud datant de 1895 fut publié qui attestait que cette théorie avait déjà été formulée avant Hebb. Cette théorie est souvent résumée par la formule : () C'est une règle d'apprentissage des réseaux de neurones artificiels dans le contexte de l'étude d'assemblées de neurones.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Potentiel postsynaptiqueUn potentiel postsynaptique (PPS), encore appelé potentiel gradué ou potentiel électro-tonique, est le signal unitaire produit en aval d'une synapse. Il s'agit d'un changement transitoire et local de la différence de potentiel électrochimique établie de part et d'autre de la membrane. La plaque motrice est la zone synaptique entre le neurone et la cellule musculaire. Le neurotransmetteur mis en jeu est l'acétylcholine qui va se fixer sur un récepteur et va ainsi entraîner une dépolarisation.
MotoneuroneLes motoneurones constituent la voie de sortie du système nerveux central ou la voie finale de tout acte moteur. Les corps cellulaires des motoneurones sont situés soit dans le tronc cérébral, soit dans la corne ventrale de la substance grise de la moelle épinière. Chaque motoneurone possède un axone qui part du système nerveux central pour innerver les fibres musculaires d'un muscle. L'ensemble constitué par un motoneurone et les fibres musculaires qu'il innerve constitue une unité motrice.
Temporal difference learningLe Temporal Difference (TD) learning est une classe d'algorithmes d'apprentissage par renforcement sans modèle. Ces algorithmes échantillonnent l'environnement de manière aléatoire à la manière des méthodes de Monte Carlo. Ils mettent à jour la politique (i.e. les actions à prendre dans chaque état) en se basant sur les estimations actuelles, comme les méthodes de programmation dynamique. Les méthodes TD ont un lien avec les modèles TD dans l'apprentissage animal. vignette|151x151px|Diagramme backup.
Plasticité neuronalevignette|Effets schématiques de la neuroplasticité après entraînement Plasticité neuronale, neuroplasticité ou encore plasticité cérébrale sont des termes génériques qui décrivent les mécanismes par lesquels le cerveau est capable de se modifier lors des processus de neurogenèse dès la phase embryonnaire ou lors d'apprentissages. Elle s’exprime par la capacité du cerveau de créer, défaire ou réorganiser les réseaux de neurones et les connexions de ces neurones. Le cerveau est ainsi qualifié de « plastique » ou de « malléable ».
Pointes-OndesLes pointes-ondes (spike-and-wave en anglais) sont un motif d'oscillation de l'électroencéphalogramme (EEG) qui apparaît en général pendant certaines manifestations d'épilepsie chez l'homme ou chez l'animal. Les pointes-ondes sont observées en particulier lors de crises généralisées, par exemple lors du petit mal épileptique (crises d'absence). Chez l'homme, les pointes-ondes se produisent généralement autour d'une fréquence de 3 Hz ou moins, et sont caractérisées par une remarquable synchronie bilatérale.
Potentiel postsynaptique excitateurUn potentiel postsynaptique excitateur (PPSE) est un changement de la valeur du potentiel de membrane (dans le sens d'une dépolarisation) localisé dans le neurone postsynaptique. Cette dépolarisation est causée par un mouvement d'ions (cations) à travers la membrane, lui-même permis par l'ouverture de récepteurs postsynaptiques (canaux membranaires) provoqué par les neurotransmetteurs largués dans l'espace synaptique par l'axone ou le dendrite d'une cellule présynaptique.