Efficient Blue-Colored Solid-State Dye-Sensitized Solar Cells: Enhanced Charge Collection by Using an in Situ Photoelectrochemically Generated Conducting Polymer Hole Conductor
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Polycrystalline zinc oxide (ZnO) films, prepared by low-pressure chemical vapor deposition are investigated in this thesis. ZnO belongs to the class of transparent conductive oxide materials, as it is transparent to light from the visible to the near-infra ...
With growing concerns on future energy supplies, solar energy appears as an energy source whose potential remains to be tapped at a large scale. In the last two decades, dye-sensitized solar cells (DSCs) have been considered as a competitive means to conve ...
High-performance transparent conducting oxides (TCOs) have significance for optimising PV performance. The efficiency of the resulting solar cells is dependent particularly on achieving high light scattering, low resistivity and low absorption (via low fre ...
Due to advantages such as mechanical flexibility, light weight and the prospect to use low-cost roll-to-roll manufacturing processes, organic semiconductors have been widely investi-gated in many application areas as alternatives for their inorganic counte ...
We investigate dye-sensitized solar cells (DSSCs) based on PEDOT as hole conductor and prepd. by photoelectrochem. polymer deposition at different light intensities. We specifically investigate the effect of light intensity on the PEDOT polymer and in turn ...
We applied organic donor-Ï-acceptor (D-Ï-A) sensitizers for photoelectrochemical polymerization (PEP) because of their appropriate energy levels and high light absorption. The polymerized conducting polymer PEDOT was used as hole conductor in all-solid-s ...
Solid-state dye-sensitized solar cells (sDSCs) are devoid of such issues as electrolyte evaporation or leakage and electrode corrosion, which are typical for traditional liquid electrolyte-based DSCs. Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the ...
In dye-sensitized solar cells an efficient transfer of holes from the oxidized dye to the contact is necessary, which in solid-state dye-sensitized solar cells is performed by hole-conductor mols. In this report we use photoinduced absorption and transient ...
With the increasing cognition of the importance of organic molecules, they are widely applied in printing, biological and pharmacological fields, because of their special capabilities of harvesting solar light, scavenging free radicals, and chelating metal ...
Conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with iron(III) tris-p-toluenesulfonate (PEDOT:Tos) having metallic conductivity was coated onto fluorine-doped tin oxide (FTO) glass and plain glass substrates and used as a counter electrod ...