Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The intestinal epithelium acts as vital gate keeper between the fish and its surrounding environment. A single layer of connected epithelial cells forms a selective barrier, which, among other essential functions, is important for nutrient uptake and defen ...
The gut of fish belongs to the most essential barriers that mark the border between the organism and its surrounding environment. The pivotal barrier function, allowing to absorb nutrients from the diet while simultaneously protecting the organism from pat ...
Background: Silver nanoparticles (AgNP) are widely applied and can, upon use, be released into the aquatic environment. This raises concerns about potential impacts of AgNP on aquatic organisms. We here present a side by side comparison of the interaction ...
The intestine of fish is a multifunctional organ: lined by only a single layer of specialized epithelial cells, it has various physiological roles including nutrient absorption and ion regulation. It moreover comprises an important barrier for environmenta ...
Owing to their unique antimicrobial properties, silver nanoparticles (AgNP) are among the most widely used engineered nanoparticles in a variety of consumer products and medical applications. Their resulting release into the aquatic environment raises conc ...
It is known that the nanoparticle-cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticl ...
Upon contact with biota, nanoparticles can bind to proteins, which coat the nanoparticles and form a nanoparticle-protein corona. Knowledge of corona proteins is therefore important for a mechanistic understanding of how nanoparticles interact with biomole ...
We introduce a novel in vitro rainbow trout intestinal barrier model and demonstrate its suitability for investigating nanoparticle transport across the intestinal epithelium. Rainbow trout (Oncorhynchus mykiss) intestinal cells (RTgutGC) were grown as mon ...
To understand conditions affecting bioavailability and toxicity of citrate-coated silver nanoparticles (cit-AgNP) and dissolved silver at the luminal enterocyte interface, we exposed rainbow trout (Oncorhynchus mykiss) gut cells (RTgutGC) in media of contr ...
In aqueous solutions, silver nanoparticle (AgNP) behavior is affected by a variety of factors which lead to altered AgNP size and toxicity. Our research aims to explore the effect of media composition on citrate-coated AgNP (cit-AgNP) behavior and toxicity ...