Publication

Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules

Publications associées (224)

Scanning Tunneling Microscopy for Molecules: Effects of Electron Propagation into Vacuum

Klaus Kern, Abhishek Grewal

Using scanning tunneling microscopy (STM), we experimentally and theoretically investigate isolated platinum phthalocyanine (PtPc) molecules adsorbed on an atomically thin NaCl(100) film vapor deposited on Au(111). We obtain good agreement between theory a ...
Amer Chemical Soc2024

Controlling crystal cleavage in focused ion beam shaped specimens for surface spectroscopy

Philip Johannes Walter Moll, Matthias Carsten Putzke, Andrew Scott Hunter

Our understanding of quantum materials is commonly based on precise determinations of their electronic spectrum by spectroscopic means, most notably angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy. Both require atomicall ...
Melville2024

Advances in High-Speed, Multiparametric Atomic Force Microscopy

Santiago Harald Andany

After decades of technological advancements, high-speed atomic force microscopy (HS-AFM) has emerged as a powerful technique for visualizing dynamic processes. At the nanoscale, the AFM provides valuable insights into the sample by sensing minute interacti ...
EPFL2024

Plasma-Assisted Hybrid Vapour Deposition Technology for Thin Film Fabrication

Caroline Hain

Continuous development of thin film deposition technologies is essential for the fabrication of films that meet the specific requirements of their target applications and working conditions. Therefore, it is necessary to increase the number of accessible a ...
EPFL2023

Atomic-scale Characterization of Strain and Gate effects on Two-dimensional Materials by Scanning Tunneling Microscopy

Jz -Yuan Juo

Strain is an inevitable phenomenon in two-dimensional (2D) material, regardless of whether the film is suspended or supported. Moreover, strain is known to alter the physical and chemical properties, such as the band gap, charge carrier effective masses, d ...
EPFL2023

Signal strength and integrated intensity in confocal and image scanning microscopy

Giorgio Tortarolo

The properties of signal strength and integrated intensity in a scanned imaging system are reviewed. These prop-erties are especially applied to confocal imaging systems, including image scanning microscopy. The integrated intensity, equal to the image of ...
Optica Publishing Group2023

Background Rejection in Two-Photon Fluorescence Image Scanning Microscopy

Giorgio Tortarolo

We discuss the properties of signal strength and integrated intensity in two-photon excitation confocal microscopy and image scanning microscopy. The resolution, optical sectioning and background rejection are all improved over nonconfocal two-photon micro ...
MDPI2023

Image scanning microscopy with a doughnut beam: signal strength and integrated intensity

Giorgio Tortarolo

We discuss the effects of image scanning microscopy using doughnut beam illumination on the properties of signal strength and integrated intensity. Doughnut beam illumination can give better optical sectioning and background rejection than Airy disk illumi ...
Optica Publishing Group2023

Visualizing Chiral Interactions in Carbohydrates Adsorbed on Au(111) by High-Resolution STM Imaging

Klaus Kern, Uta Schlickum, Stephan Rauschenbach

Carbohydrates are the most abundant organic material on Earth and the structural "material of choice" in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. ...
WILEY-V C H VERLAG GMBH2023

Advancing atomic force microscopy through open source instrumentation

Mustafa Kangül

Atomic force microscopy (AFM), a member of the scanning probe microscopy (SPM) family, holds a unique position as a nano-characterization instrument in the fields of physics, chemistry, and biology. Its ability to provide atomic resolution and operate in v ...
EPFL2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.