Impact of polymer-modified gold nanoparticles on brain endothelial cells: exclusion of endoplasmic reticulum stress as a potential risk factor
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Firstly, this thesis presents the in vivo evaluation of a previously developed model system that utilizes CD4+ TE/M cells decorated with up to 100 polystyrene based nanoparticles per cell by maleimide thiol conjugation. These nanoparticle T-cell conjugates ...
EPFL2020
, ,
The control of the aggregation of biomedical nanoparticles (NP) in physiological conditions is crucial as clustering may change completely the way they interact with the biological environment. Here we show that Au nanoparticles, functionalized by an anion ...
ROYAL SOC CHEMISTRY2022
, , , ,
The brain is an ultra-soft viscoelastic matrix. Sub-kPa hydrogels match the brain's mechanical properties but are challenging to manipulate in an implantable format. We propose a simple fabrication and processing sequence, consisting of de-hydration, patte ...
Conventional therapeutics are often limited by their targeting ability, resulting in harmful and potential fatal side-effects for the patients. Recently, new strategies have been developed to improve target specificity of drugs in order to generate more ef ...
Cells are powerful carriers that can help to improve the delivery of nanomedicines. One approach to use cells as carriers is to immobilize the nanoparticulate cargo on the cell surface. While a plethora of chemical conjugation strategies are available to b ...
The future of medicine lies in therapeutic approaches that can specifically target sites of disease and induce a localized and effective therapeutic effect. Cell-mediated delivery, especially using cells of the circulatory repertoire such as T lymphocytes, ...
Diagnosis and treatment of brain disorders, such as epilepsy, neurodegenerative diseases and tumors, would benefit from innovative approaches to deliver therapeutic or diagnostic compounds into the brain parenchyma, with either a homogeneous or a targeted ...
The misfolding and self-assembly of proteins into fibrils is a hallmark of several neurodegenerative and systemic diseases. These disease-associated proteins have the propensity to form fibrils with a cross-β sheet structure, called amyloids. Amyloids can ...
EPFL2020
Efficient medical care fundamentally relies on the ability to provide a timely and accurate diagnosis. Thanks to advances in biomedical research, specific molecules called diagnostic molecular biomarkers have been discovered in the human body that help ind ...
Cells are attractive as carriers that can help to enhance control over the biodistribution of polymer nanomedicines. One strategy to use cells as carriers is based on the cell surface immobilization of the nanoparticle cargo. While a range of strategies ca ...