Rayon gammavignette|Des rayons gamma sont produits par des processus nucléaires énergétiques au cœur des noyaux atomiques. Un rayon gamma (ou rayon γ) est un rayonnement électromagnétique à haute fréquence émis lors de la désexcitation d'un noyau atomique résultant d'une désintégration. Les photons émis sont caractérisés par des énergies allant de quelques keV à plusieurs centaines de GeV voire jusqu'à pour le plus énergétique jamais observé. Les rayons gamma furent découverts en 1900 par Paul Villard, chimiste français.
AnalysisAnalysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (384–322 B.C.), though analysis as a formal concept is a relatively recent development. The word comes from the Ancient Greek ἀνάλυσις (analysis, "a breaking-up" or "an untying;" from ana- "up, throughout" and lysis "a loosening"). From it also comes the word's plural, analyses.
GammaGamma (capitale Γ, minuscule γ ; en grec γάμμα), est la lettre de l'alphabet grec. Dérivée de la lettre gaml x12px de l'alphabet phénicien, elle est l'ancêtre des lettres C, G, Ɣ (gamma) de l'alphabet latin, et de la lettre Г de l'alphabet cyrillique. En grec ancien, gamma représente la consonne occlusive vélaire voisée . En grec moderne, elle représente une consonne fricative voisée. Elle est réalisée soit comme une palatale (devant une voyelle antérieure, /e, i/), soit une vélaire (dans les autres cas).
Offset binaryOffset binary, also referred to as excess-K, excess-N, excess-e, excess code or biased representation, is a method for signed number representation where a signed number n is represented by the bit pattern corresponding to the unsigned number n+K, K being the biasing value or offset. There is no standard for offset binary, but most often the K for an n-bit binary word is K = 2n−1 (for example, the offset for a four-digit binary number would be 23=8).
Signed number representationsIn computing, signed number representations are required to encode negative numbers in binary number systems. In mathematics, negative numbers in any base are represented by prefixing them with a minus sign ("−"). However, in RAM or CPU registers, numbers are represented only as sequences of bits, without extra symbols. The four best-known methods of extending the binary numeral system to represent signed numbers are: sign–magnitude, ones' complement, two's complement, and offset binary.