Publication

Dystemo: Distant Supervision Method for Multi-Category Emotion Recognition in Tweets

Résumé

Emotion recognition in text has become an important research objective. It involves building classifiers capable of detecting human emotions for a specific application, for example, analyzing reactions to product launches, monitoring emotions at sports events, or discerning opinions in political debates. Most successful approaches rely heavily on costly manual annotation. To alleviate this burden, we propose a distant supervision method-Dystemo-for automatically producing emotion classifiers from tweets labeled using existing or easy-to-produce emotion lexicons. The goal is to obtain emotion classifiers that work more accurately for specific applications than available emotion lexicons. The success of this method depends mainly on a novel classifier-Balanced Weighted Voting (BWV)-designed to overcome the imbalance in emotion distribution in the initial dataset, and on novel heuristics for detecting neutral tweets. We demonstrate how Dystemo works using Twitter data about sports events, a fine-grained 20-category emotion model, and three different initial emotion lexicons. Through a series of carefully designed experiments, we confirm that Dystemo is effective both in extending initial emotion lexicons of small coverage to find correctly more emotional tweets and in correcting emotion lexicons of low accuracy to perform more accurately.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.