We explore the largely uncharted scattering properties of acoustic systems that are engineered to be invariant under a special kind of space-time symmetry, consisting in taking their mirror image and running time backwards. Known as Parity-Time symmetry, this special condition is shown here to lead to acoustic metamaterials that possess a balanced distribution of gain (amplifying) and loss (absorbing) media, at the basis of ideal loss-compensation, and under certain conditions, unidirectional invisibility. We have designed and built the first acoustic metamaterial with parity-time symmetric properties, obtained by pairing the acoustic equivalent of a lasing system with a coherent perfect acoustic absorber, implemented using electro-acoustic resonators loaded with non-Foster electrical circuits. The active system can be engineered to be fully stable and, in principle, broadband. We discuss the underlying physics and present the realization of a unidirectional invisible acoustic sensor with unique sensing properties. We also discuss the potential of PT acoustic metamaterials and metasurfaces for a variety of metamaterial-related applications, which we obtain in a loss-immune and broadband fashion, including perfect cloaking of sensors, planar focusing, and unidirectional cloaking of large objects.
Romain Christophe Rémy Fleury, Amir Jafargholi, Jalaledin Tayebpour
Romain Christophe Rémy Fleury, Hervé Lissek, Stanislav Sergeev