Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Mycobacterium tuberculosis, the etiological agent for the tuberculosis disease, is a bacterial pathogen thought to infect about a quarter of the global human population. It is the first cause of death among infectious diseases, and is most prevalent in low ...
Optical microscopy is one widely used tool to study cell functions and the interaction of molecules at a sub-cellular level. Optical microscopy techniques can be broadly divided into two categories: partially coherent and incoherent. Coherent microscopy te ...
Light microscopy is a tool of paramount importance for biologists and has been constantly improved for the past four centuries. Despite many recent developments, microscopy techniques still require improvement, especially to reach better temporal and spect ...
Fluorescence super-resolution microscopy has allowed unprecedented insight into the workings of biological systems below the diffraction limit of light. Over the past decade, it has overcome several challenges to deliver 3D, multi-color and faster imaging ...
Imaging live cells in their native environment is crucial for the understanding of complex biological phenomena. Modern optical microscopy methods such as fluorescence super-resolution microscopy are increasingly combined with complementary, label-free tec ...
Super-resolution fluorescence microscopy is a powerful tool to visualize biomolecules and cellular structures at the nanometer scale. Employing these techniques in living cells has opened up the possibility to study dynamic processes with unprecedented spa ...
Super-resolution fluorescence microscopy is widespread, owing to its demonstrated ability to resolve dynamical processes within cells and to identify the structure and position of specific proteins in the interior of protein complexes. Nowadays, subcellula ...
Single-molecule localization microscopy (SMLM) describes a family of powerful imaging techniques that dramatically improve spatial resolution over standard, diffraction-limited microscopy techniques and can image biological structures at the molecular scal ...
Fluorescence microscopy is the method of choice to monitor dynamic processes in living cells due to its non-invasive nature. A variety of different fluorophores and labeling systems are currently used to selectively visualise structures or biomolecules of ...
EPFL2020
, , , , ,
In fluorescence microscopy live-cell imaging, there is a critical trade-off between the signal-to-noise ratio and spatial resolution on one side, and the integrity of the biological sample on the other side. To obtain clean high-resolution (HR) images, one ...