Observation and analysis of the Coulter effect through carbon nanotube and graphene nanopores
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The preparation of atom-thick porous lattice hosting & Aring;-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorpora ...
Single-layer graphene, hosting a high density of functionalized molecular-sieving atom-thick pores, is considered to be an excellent material for gas separation membranes. These functionalized atom-thick pores enable the shortest transport pathway across t ...
Cotton fibers, a natural cellulose, have played a critical role in the development of wearable energy storage, owning to their wearability, integrability, eco-benignity, and cost effectiveness. Graphene, a two-dimensional carbon material, possesses excelle ...
Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...
Hydrodynamics at the nanoscale involves both fundamental study and application of fluid and mass transport phenomena in nanometer-sized confinements. Nanopores in single-layer graphene can be highly attractive for exploring the molecular transport of gas a ...
Graphene/cotton fibers show significant promise in wearable energy storage due to their low cost, porous structure, and exceptional integration ability into wearable systems. However, the eco-unfriendly reductants and standalone electric double-layer capac ...
Graphene solution-gated field-effect transistors (gSGFETs) offer high potential for chemical and biochemical sensing applications. Among the current trends to improve this technology, the functionalization processes are gaining relevance for its crucial im ...
Spanning the tissue transparency window, the near-infrared (NIR) photoluminescence (PL) of single-walled carbon nanotubes (SWCNTs) can optically penetrate biological tissue for deep-tissue imaging and optical sensing. SWCNTs are often functionalized with s ...
Nanoporous single-layer graphene (N-SLG) membranes, owing to their single-atom thinness, have the potential to exceed the permeance and selectivity limits of gas separation membranes. However, two key issues in the top-down N-SLG synthesis need to be addre ...
The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilit ...