Distributed bounded-error state estimation based on practical robust positive invariance
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A non-parametric method of distribution estimation for univariate data is presented. The idea is to adapt the smoothing spline procedure used in regression to the estimation of distributions via a scatterplot smoothing of theempirical distribution function ...
In this paper we aim at controlling physically meaningful quantities with emphasis on environmental applications. This is carried out by an efficient numerical procedure combining the goal-oriented framework [R. Becker, R. Rannacher, An optimal control app ...
This paper focuses on distributed state estimation using a sensor network for monitoring a linear system. In order to account for physical constraints on process states and inputs, we propose a moving horizon approach where each sensor has to solve a quadr ...
This paper presents a novel distributed estimation algorithm based on the concept of moving horizon estimation. Under weak observability conditions we prove convergence of the state estimates computed by any sensor to the correct state even when constraint ...
We pose the estimation of the parameters of multiple superimposed exponential signals in additive Gaussian noise problem as a Maximum Likelihood (ML) estimation problem. The ML problem is very non linear and hard to solve. Some previous works focused on fi ...
The sensitivity of the unmeasured state variables to the measurements strongly affects the rate of convergence of a state estimation algorithm. To overcome potential observability problems, the approach has been to identify the model parameters so as to re ...