A hybrid model predictive control scheme for multi-agent containment and distributed sensing
Publications associées (34)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Natural and artificial societies often divide the workload between specialized members. For example, an ant worker may preferentially perform one of many tasks such as brood rearing, foraging and nest maintenance. A robot from a rescue team may specialize ...
In reinforcement learning, agents learn by performing actions and observing their outcomes. Sometimes, it is desirable for a human operator to \textit{interrupt} an agent in order to prevent dangerous situations from happening. Yet, as part of their learni ...
We consider the problem of dictionary learning over large scale models, where the model parameters are distributed over a multi-agent network. We demonstrate that the dual optimization problem for inference is better conditioned than the primal problem and ...
This paper proposes a control scheme for distributed sensing using a leader/follower multi-agent architecture. The control objective is to make a group of mobile agents cover and sense a sequence of regions of interest. More specifically, when the leaders ...
This work presents and studies a distributed algorithm for solving optimization problems over networks where agents have individual costs to minimize subject to subspace constraints that require the minimizers across the network to lie in a low-dimensional ...
We investigate how probability tools can be useful to study representations of non-amenable groups. A suitable notion of "probabilistic subgroup" is proposed for locally compact groups, and is valuable to induction of representations. Nonamenable groups ad ...
We propose a class of novel variance-reduced stochastic conditional gradient methods. By adopting the recent stochastic path-integrated differential estimator technique (SPIDER) of Fang et al. (2018) for the classical Frank-Wolfe (FW) method, we introduce ...
We propose a way to estimate the value function of a convex proximal minimization problem. The scheme constructs a convex set within which the optimizer resides and iteratively refines the set every time that the value function is sampled, namely every tim ...
We propose a way to estimate the value function of a convex proximal minimization problem. The scheme constructs a convex set within which the optimizer resides and iteratively refines the set every time that the value function is sampled, namely every tim ...
We consider multi-agent decision making, where each agent optimizes its cost function subject to constraints. Agents’ actions belong to a compact convex Euclidean space and the agents’ cost functions are coupled. We propose a distributed payoff-based algor ...