Symbolic artificial intelligenceIn artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.
Notion à contenu variableUne notion à contenu variable (anglais : fuzzy concept) est un concept flou qui présente plus d'une solution interprétative possible dans l'interprétation d'un texte. Il s'agit d'un concept à texture ouverte qui présente un noyau de sens clair sur lequel il y a consensus sur le sens ainsi qu'une zone de pénombre sur laquelle il n'y a pas de consensus, d'après le philosophe du droit H.L.A. Hart. En droit, les théoriciens de l'interprétation des lois ont recours à l'idée de notion à contenu variable lorsque le législateur utilise des concepts à contours indéfinis dans la rédaction d'un texte législatif.