Degradation in photoelectrochemical devices: Review with an illustrative case study
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Due to the limiting amount of fossil fuel available and to the continuous growth of the world energy consumption, it becomes important to find alternative energy sources. Hydrogen produced by the photoelectrolysis of water is a perfect candidate as a clean ...
The actualization of a hydrogen economy requires cost-effective and environmentally benign solutions to hydrogen production. Chemical energy in the form of hydrogen is more interesting than electricity to satisfy our ever-increasing energy demand because i ...
Hematite (alpha-Fe2O3) is widely recognized as a promising candidate for the production of solar fuels via water splitting, but its intrinsic optoelectronic properties have limited its performance to date. In particular, the large electrochemical overpoten ...
Photoelectric conversion device (1) comprising semiconductor electrode (15) having semiconductor layer (7) carrying a sensitizing dye, counter electrode (9) arranged opposite to the semiconductor electrode (15) and electrolyte layer (13) arranged between t ...
The photocurrent-voltage characteristic of a photoelectrochemical cell for solar hydrogen production via water splitting, using undoped-hematite as photoanode, was obtained. Photoelectrochemical characteristics of the cell were also investigated by electro ...
The kinetic competition between electron-hole recombination and water oxidation is a key consideration for the development of efficient photoanodes for solar driven water splitting. In this study, we employed three complementary techniques, transient absor ...
A sustainable route to store the energy provided by the Sun, is to directly convert sunlight into molecular hydrogen using a semiconductor performing water photolysis. Hematite (α-Fe2O3) is promising for this application due to its ample abundance, chemica ...
The photoelectrochemical reduction of water or CO2 is a promising route to sustainable solar fuels but hinges on the identification of a stable photoanode for water oxidation. Semiconductor oxides like Fe2O3 and BiVO4 have been gaining significant attentio ...
The instantaneous efficiency of an operating photoelectrochemical solar-fuel-generator system is a complicated function of the tradeoffs between the light intensity and temperature-dependence of the photovoltage and photocurrent, as well as the losses asso ...
Photoelectrochemical water-splitting devices, which use solar energy to convert water into hydrogen and oxygen, have been investigated for decades. Multijunction designs are most efficient, as they can absorb enough solar energy and provide sufficient free ...