Context-Dependent Privacy-Aware Photo Sharing based on Machine Learning
Publications associées (75)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The migration of media consumption to personal computers retains distributed social viewing, but only via nonsocial, strictly personal interfaces. This article presents an architecture, and implementation for media sharing that allows for enhanced social i ...
We investigate four different privacy-sensitive features, namely energy, zero crossing rate, spectral flatness, and kurtosis, for speech detection in multiparty conversations. We liken this scenario to a meeting room and define our datasets and annotations ...
In this paper we present a novel approach to location obfuscation for location privacy purposes. The motivating observation is that obfuscation strategies only grounded on geometric criteria can lead to privacy leaks. We thus propose to complement geometry ...
Personal audio logs are often recorded in multiple environments. This poses challenges for robust front-end processing, including speech/nonspeech detection (SND). Motivated by this, we investigate the robustness of four different privacy-sensitive feature ...
We investigate four different privacy-sensitive features, namely energy, zero crossing rate, spectral flatness, and kurtosis, for speech detection in multiparty conversations. We liken this scenario to a meeting room and define our datasets and annotations ...