Land use controls stream ecosystem metabolism by shifting dissolved organic matter and nutrient regimes
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Dredging generates remobilisation of sediments contaminated by non-degradable compounds such as metals, to which aquatic organisms can be exposed. This study aims at assessing the environmental impact of sediments remobilised in the Rhine River (France) du ...
Haynesina germanica is a coastal benthic foraminifer known to sequester chloroplasts from benthic pennate diatoms. This study investigates its cellular organization, as well as the oxygen consumption and production rates under dark and light conditions. Th ...
Scaling aquatic ecosystem processes like nutrient removal is critical for assessing the importance of streams and rivers to watershed nutrient export. We used pulse NH4+ enrichment experiments and measured net NH4+ uptake in 7 streams throughout a mountain ...
Tropical forest conversion to agricultural land leads to a strong decrease of soil organic carbon (SOC) stocks. While the decrease of the soil C sequestration function is easy to measure, the impacts of SOC losses on soil fertility remain unclear. Especial ...
Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these proces ...
Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribut ...
Adsorption onto solid water interfaces is a key process governing the fate and transport of waterborne viruses. Although negatively charged viruses are known to extensively adsorb onto positively charged adsorbent surfaces, virus adsorption in such systems ...
Dissolved organic matter (DOM) can act as a photosensitizer and an inhibitor in the phototransformation of several nitrogen-containing organic contaminants in surface waters. The present study was performed to select a probe molecule that is suitable to me ...
Benthic (streambed) biofilms metabolize a substantial fraction of particulate organic matter and nutrient inputs to streams. These microbial communities comprise a significant proportion of overall biomass in headwater streams, and they present a primary c ...
Within the benthic realm life carpets the sedimentary surface of all aquatic ecosystems including the oceans, lakes, rivers and streams. Microorganisms of all types, bacteria, archaea and eukaryotes, inhabit these environments and through their metabolic a ...