ScienceWISE: Topic Modeling over Scientific Literature Networks
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This thesis focuses on designing spectral tools for graph clustering in sublinear time. With the emergence of big data, many traditional polynomial time, and even linear time algorithms have become prohibitively expensive. Processing modern datasets requir ...
In this thesis we present and analyze approximation algorithms for three different clustering problems. The formulations of these problems are motivated by fairness and explainability considerations, two issues that have recently received attention in the ...
This paper studies the problem of inferring whether an agent is directly influenced by another agent over a network. Agent i influences agent j if they are connected (according to the network topology), and if agent j uses the data from agent i to update i ...
The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering ...
In responsive cities, user feedback and information provided by sensors are combined to improve urban design and to support asset managers in performing decision making. Optimal management of infrastructure networks requires accurate knowledge of current a ...
Clustering in education, particularly in large-scale online environments like MOOCs, is essential for understanding and adapting to diverse student needs. However, the effectiveness of clustering depends on its interpretability, which becomes challenging w ...
In Virtual Reality (VR) applications, understanding how users explore the omnidirectional content is important to optimize content creation, to develop user-centric services, or even to detect disorders in medical applications. Clustering users based on th ...
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision while preserving graph topological structures and node attributive features. Previous Graph Neural Networks (GNN) require a large number of labeled ...
Graph learning methods have recently been receiving increasing interest as means to infer structure in datasets. Most of the recent approaches focus on different relationships between a graph and data sample distributions, mostly in settings where all avai ...
Data is pervasive in today's world and has actually been for quite some time. With the increasing volume of data to process, there is a need for faster and at least as accurate techniques than what we already have. In particular, the last decade recorded t ...