Microscopie électronique à balayagethumb|right|Premier microscope électronique à balayage par M von Ardenne thumb|right|Microscope électronique à balayage JEOL JSM-6340F thumb|upright=1.5|Principe de fonctionnement du Microscope Électronique à Balayage La microscopie électronique à balayage (MEB) ou scanning electron microscope (SEM) en anglais est une technique de microscopie électronique capable de produire des images en haute résolution de la surface d’un échantillon en utilisant le principe des interactions électrons-matière.
Émission par effet de champL'émission par effet de champ, ou, sous forme abrégée, lʼémission de champ, est l'émission d'électrons induits par des champs électromagnétiques externes. Elle peut avoir lieu à partir d'une surface solide ou liquide, ou bien directement au niveau d'un atome en milieu gazeux. La théorie d'émission par effet de champ à partir des métaux a été décrite la première fois par Fowler et Nordheim en 1928. Le courant d'émission électronique se calcule au moyen de l'équation dite de Fowler-Nordheim : avec Canon à éle
Microscopie à sonde localeLa microscopie à sonde locale (MSL) ou microscopie en champ proche (MCP) ou scanning probe microscopy (SPM) en anglais est une technique de microscopie permettant de cartographier le relief (nano-topographie) ou une autre grandeur physique en balayant la surface à imager à l'aide d'une pointe très fine (la pointe est idéalement un cône se terminant par un seul atome). Le pouvoir de résolution obtenu par cette technique permet d'observer jusqu'à des atomes, ce qui est physiquement impossible avec un microscope optique, quel que soit son grossissement.
Flexible displayA flexible display or rollable display is an electronic visual display which is flexible in nature, as opposed to the traditional flat screen displays used in most electronic devices. In recent years there has been a growing interest from numerous consumer electronics manufacturers to apply this display technology in e-readers, mobile phones and other consumer electronics. Such screens can be rolled up like a scroll without the image or text being distorted.
Écran à plasmaLes écrans à plasma fonctionnent de façon similaire aux tubes d'éclairage fluorescents (improprement appelés « néons »). Ils utilisent l’électricité pour illuminer un gaz. thumb|300px|Schéma de principe Le gaz utilisé est un mélange de gaz nobles (argon 90 % et xénon 10 %). Ce mélange de gaz est inerte et inoffensif. Pour qu'il émette de la lumière on lui applique un courant électrique qui le transforme en plasma, un fluide ionisé dont les atomes ont perdu un ou plusieurs de leurs électrons et ne sont plus électriquement neutres, alors que les électrons ainsi libérés forment un nuage autour.
United States vehicle emission standardsUnited States vehicle emission standards are set through a combination of legislative mandates enacted by Congress through Clean Air Act (CAA) amendments from 1970 onwards, and executive regulations managed nationally by the Environmental Protection Agency (EPA), and more recently along with the National Highway Traffic Safety Administration (NHTSA). These standard cover common motor vehicle air pollution, including carbon monoxide, nitrogen oxides, and particulate emissions, and newer versions have incorporated fuel economy standards.
Écran à cristaux liquidesthumb|right|Dans une Tablet PC. thumb|right|Dans un appareil photographique numérique. L'écran à cristaux liquides ou LCD (de l'anglais liquid crystal display) (ACL au Québec pour affichage à cristaux liquides) permet la création d’écrans plats à faible consommation d'électricité. Ces écrans sont utilisés dans presque tous les affichages électroniques. Les premiers panneaux d’affichage à cristaux liquides ont été présentés en 1971, mais il faut attendre 1985 pour que Matsushita propose un écran plat d’une taille et d'une résolution suffisante pour être utilisable sur des micro-ordinateurs.
Rayon X caractéristiqueUn rayons X caractéristique est émis chaque fois qu'un électron placé sur une couche externe d'un atome comblent un vide d'une couche interne. Les rayons X ainsi libérés sont « caractéristiques » de chaque élément. Les rayons X caractéristiques ont été découverts par Charles Glover Barkla en 1909. Il a ensuite remporté le prix Nobel de physique pour sa découverte en 1917. Les rayons X caractéristiques sont produits lorsqu'un élément est bombardé par des particules de haute énergie, qui peuvent être des photons, des électrons ou des ions (par exemple des protons).
Semi-conducteurUn semi-conducteur est un matériau qui a les caractéristiques électriques d'un isolant, mais pour lequel la probabilité qu'un électron puisse contribuer à un courant électrique, quoique faible, est suffisamment importante. En d'autres termes, la conductivité électrique d'un semi-conducteur est intermédiaire entre celle des métaux et celle des isolants. Le comportement électrique des semi-conducteurs est généralement modélisé, en physique de l'état solide, à l'aide de la théorie des bandes d'énergie.
Spectroscopie d’émission atomiquevignette|250x250px| Spectromètre d'émission atomique à plasma à couplage inductif La spectroscopie d'émission atomique (AES) est une méthode d'analyse chimique qui utilise l'intensité de la lumière émise par une flamme, un plasma, un arc ou une étincelle à une longueur d'onde particulière pour déterminer la quantité d'un élément dans un échantillon. La longueur d'onde de la raie spectrale atomique sur le spectre d'émission donne l'identité de l'élément tandis que l'intensité de la lumière émise est proportionnelle au nombre d'atomes de l'élément.