Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
While type soundness proofs are taught in every graduate PL class, the gap between realistic languages and what is accessible to formal proofs is large. In the case of Scala, it has been shown that its formal model, the Dependent Object Types (DOT) calculus, cannot simultaneously support key metatheoretic properties such as environment narrowing and subtyping transitivity, which are usually required for a type soundness proof. Moreover, Scala and many other realistic languages lack a general substitution property. The first contribution of this paper is to demonstrate how type soundness proofs for advanced, polymorphic, type systems can be carried out with an operational semantics based on high-level, definitional interpreters, implemented in Coq. We present the first mechanized soundness proofs in this style for System F
Aleksander Slawomir Boruch-Gruszecki
We study the proof theory and algorithms for orthologic, a logical system based on ortholattices, which have shown practical relevance in simplification and normalization of verification conditions. Ortholattices weaken Boolean algebras while having po ...
Martin Odersky, Yichen Xu, Aleksander Slawomir Boruch-Gruszecki