Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The computational analysis of isomer- and conformer- dependent photochemistry of 1- and 2-naphthols and their microsolvated water clusters is motivated by their very different excited state reactivity. We present evidence that 1- and 2-naphthol follow distinct excited state deactivation pathways. The deactivation of 2-naphthols, 2-naphthol water clusters as well as of the anti conformer of 1-naphthol is mediated by the optically dark 1πσ* state. The dynamics on the 1πσ* surface leads to the homolytic cleavage of the OH bond. On the contrary, the excited state deactivation of syn 1-naphthol and 1-naphthol water clusters follows an uncommon reaction pathway. Upon excitation to the bright 1ππ*(La) state, a highly specific excited state hydrogen transfer (ESHT) to carbon atoms C8 and C5 takes place, yielding 1,8- and 1,5-naphthoquinone methides. The ESHT pathway arises from the intrinsic electronic properties of the 1ππ*(La) state of 1-naphthols.
, ,
Jan Wienold, Clotilde Marie A Pierson, Magali Bodart