Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Optimisation par essaims particulairesL'optimisation par essaims particulaires (OEP ou PSO en anglais) est une métaheuristique d'optimisation, inventée par Russel Eberhart (ingénieur en électricité) et James Kennedy (socio-psychologue) en 1995. Cet algorithme s'inspire à l'origine du monde du vivant. Il s'appuie notamment sur un modèle développé par Craig Reynolds à la fin des années 1980, permettant de simuler le déplacement d'un groupe d'oiseaux. Une autre source d'inspiration, revendiquée par les auteurs, James Kennedy et Russel Eberhart, est la socio-psychologie.
Entropie minEn probabilités et en théorie de l'information, l'entropie min d'une variable aléatoire discrète X prenant n valeurs ou sorties possibles 1... n associées au probabilités p1... pn est : La base du logarithme est juste une constante d'échelle. Pour avoir un résultat en bits, il faut utiliser le logarithme en base 2. Ainsi, une distribution a une entropie min d'au moins b bits si aucune sortie n'a une probabilité plus grande que 2-b. L'entropie min est toujours inférieure ou égale à l'entropie de Shannon; avec égalité si toutes les valeurs de X sont équiprobables.
Distance statistiquevignette|Représentation de la distance en variation totale (en gris) entre deux fonctions de densité En mathématiques, et plus précisément en théorie des probabilités et en statistique, la notion de distance statistique sert à mesurer l'écart entre deux lois de probabilité. Les distances statistiques sont notamment utilisées en théorie de l'information, en statistique, en apprentissage automatique, et en cryptologie. Lorsqu'aucune précision n'est donnée, la « distance statistique » entre deux lois fait généralement référence à la distance en variation totale.
Coût irrécupérableEn économie comportementale et dans l'analyse de la décision, les coûts irrécupérables (sunk cost en anglais) sont les coûts qui ont déjà été payés définitivement ; ils ne sont ni remboursables, ni récupérables par un autre moyen. La distinction avec les autres coûts est importante pour les scénarios où l'on envisage, ou bien où l'on craint de subir, de renoncer à, ou de ne plus être en mesure d'utiliser ce qu'ils ont servi à acquérir.