Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper proposes a pricing scheme for the day-ahead market in power systems with a large percentage of renewable stochastic production. To clear the day-ahead market, instead of a simplistic deterministic model, we use a two-stage stochastic programming model that embodies a prognosis of future operating conditions. Non-convexities due to start-up costs and the on/off status of generators and their minimum power outputs are properly taken into account. Our goal is to obtain uniform day-ahead clearing prices that deviate in the least possible manner from marginal prices and that allow producers to recover their costs without uplifts. The proposed methodology is illustrated using a simple example and a realistic case study.
Daniel Kuhn, François Richard Vuille, Dirk Lauinger
,