Learning spatio-temporal patterns in the presence of input noise using phase-change memristors
Publications associées (45)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The precise times of occurrence of individual pre- and postsynaptic action potentials are known to play a key role in the modification of synaptic efficacy. Based on stimulation protocols of two synaptically connected neurons, we infer an algorithm that re ...
We study analytically a model of long-term synaptic plasticity where synaptic changes are triggered by presynaptic spikes, postsynaptic spikes, and the time differences between pre- and postsynaptic spikes. We show that plasticity can lead to an intrinsic ...
A correlation-based (Hebbian'') learning rule at the spike level is formulated, mathematically analyzed, and compared with learning in a firing-rate description. As for spike coding, we take advantage of a learning window'' that describes the effect of ...
Biological information-processing systems, such as populations of sensory and motor neurons, may use correlations between the firings of individual elements to obtain lower noise levels and a systemwide performance improvement in the dynamic range or the s ...
An analytical model is proposed that can predict the shape of the poststimulus time histogram (PSTH) response to a current pulse of a neuron subjected to uncorrelated background input. The model is based on an explicit description of noise in the form of a ...