Derived algebraic geometryDerived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements.
RationalitéEn philosophie, en psychologie et en sociologie, la rationalité est un concept servant à définir et mesurer la capacité de raisonnement, telle qu'elle se manifeste dans un (ou des) comportement(s) humain(s). Plus précisément, le mot désigne la qualité de ce qui, dans l’ordre de la connaissance, est (c'est-à-dire relevant de l'usage de la raison, ou intellect) et de ce qui, plus rarement, dans l’ordre de la pratique, relève du raisonnable.
Highly structured ring spectrumIn mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory. Highly structured ring spectra have better formal properties than multiplicative cohomology theories – a point utilized, for example, in the construction of topological modular forms, and which has allowed also new constructions of more classical objects such as Morava K-theory.