Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Quantum computers hold the promise to solve some of the most complex problems of today. The core of a quantum computer is a quantum processor, which is composed of quantum bits (qubits). Qubits are fragile and their state needs to be corrected in real time ...
As quantum processors grow in complexity, attention is moving to the scaling prospects of the entire quantum computing system, including the classical support hardware. Recent results in high-fidelity control of individual spins in silicon, combined with d ...
Quantum computing is one of the great scientific challenges of the 21st century. Small-scalesystems today promise to surpass classical computers in the coming years and to enable thesolution of classically intractable computational tasks in the fields of q ...
Quantum processors rely on classical electronic controllers to manipulate and read out the state of quantum bits (qubits). As the performance of the quantum processor improves, nonidealities in the classical controller can become the performance bottleneck ...
We employ the Dirac-Frenkel variational principle and the multiple Davydov ansatz to study time-dependent fluorescence spectra of a driven qubit in the weak to strong qubit-reservoir coupling regimes, where both the Rabi frequency and the spontaneous decay ...
Accurate and low-noise generation and amplification of microwave signals are required for the manipulation and readout of quantum bits (qubits). A fault-tolerant quantum computer operates at deep cryogenic temperatures (i.e.,
The energy landscape of a single electron in a triple quantum dot can be tuned such that the energy separation between ground and excited states becomes a flat function of the relevant gate voltages. These so-called sweet spots are beneficial for charge co ...
Quantum computers can potentially provide an unprecedented speed-up with respect to traditional computers. However, a significant increase in the number of quantum bits (qubits) and their performance is required to demonstrate such quantum supremacy. While ...
The design of a large-scale quantum computer requires co-optimization of both the quantum bits (qubits) and their control electronics. This work presents the first systematic design of such a controller to simultaneously and accurately manipulate the state ...
Hierarchical reversible logic synthesis can find quantum circuits for large combinational functions. The price for a better scalability compared to functional synthesis approaches is the requirement for many additional qubits to store temporary results of ...