Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper we propose a fast novel non-linear filtering method named Relative-Energy (Rel-En), for robust short-term event extraction from biomedical signals. We developed an algorithm that extracts short- and long-term energies in a signal and provides a coefficient vector with which the signal is multiplied, heightening events of interest. This algorithm is thoroughly assessed on benchmark datasets in three different biomedical applications namely, ECG QRS-complex detection, EEG K-complex detection, and imaging photoplethysmography (iPPG) peak detection. Rel-En successfully identified the events in these settings. Compared to the state-of-the-art, better or comparable results were obtained on QRS-complex and K-complex detection. For iPPG peak detection, the proposed method was used as a preprocessing step to a fixed threshold algorithm that lead to a significant improvement in overall results. While easily defined and computed, Rel-En robustly extracted short-term events of interest. The proposed algorithm can be implemented by two filters and its parameters can be selected easily and intuitively. Furthermore, Rel-En algorithm can be used in other biomedical signal processing applications where a need of short-term event extraction is present.
Jean-Marc Vesin, Adrian Luca, Etienne Pruvot