Multifunctional Plasmonic Metasurfaces for Novel Spectral and Spatial Applications
Publications associées (179)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Nanoparticles promise a variety of application in energy, medicine, and biology. However, most nanoparticlesâ material composition and shape cannot be tuned and so functions have thus far been limited. Moreover they are often also chemically unstable in ...
We introduce a general formalism combining the coupled oscillator model with the transfer matrix method to analyze and engineer the phase of the light reflected from a Fano-resonant metasurface. This method accounts for periodicity and the presence of subs ...
Since most of the academic photonic and plasmonic nanostructures are based on slow and expensive electron beam lithography processes, there is a need for innovative alternatives suitable for industrial manufacturing. Large areas need to be patterned with a ...
It has been shown that acoustic waves with helical wavefronts can carry angular momentum, which can be transmitted towards a propagating medium. Such a wave field can be achieved by using a planar array of electroacoustic transducers, forming a given spati ...
We consider a narrow magneto-dipole transition in the Tm-169 atom at the wavelength of 1.14 mu m as a candidate for a two-dimensional-optical lattice clock. Calculating dynamic polarizabilities of the two clock levels [Xe]4f(13)6s(2)(J = 7/2) and [Xe]4f(13 ...
We employ laser interference lithography as a reliable and low-cost fabrication method to create nanowire and nanosquare arrays in photopolymers for manufacturing plasmonic perfect absorber sensors over homogeneous areas as large as 5.7 cm(2). Subsequently ...
This paper is devoted to the study of cloaking via anomalous localized resonance (CALR) in the two- and three-dimensional quasistatic regimes. CALR associated with negative index materials was discovered by Milton and Nicorovici [21] for constant plasmonic ...
Plasmonic nanohole arrays have received significant attention, as they have highly advantageous optical properties for ultrasensitive and label-free biosensing applications. Currently, most of these subwavelength periodic apertures are mainly implemented o ...
This paper is devoted to the study of cloaking via anomalous localized resonance (CALR) in two and three dimensions in the quasistatic regime. Two key figures of CALR are (i) the localized resonance and (ii) the connection between the localized resonance a ...
We investigated experimentally and numerically in the optical near-field a plasmonic model system similar to a dolmen-type structure for phenomena such as plasmon-induced transparency. Through engineering of coupling strength, structure orientation, and in ...