Multiplicity Of Solutions For Linear Partial Differential Equations Using (Generalized) Energy Operators
Publications associées (111)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Let Omega subset of R-n be an open set, A is an element of R-nxn and G : Omega -> R-nxn be given. We look for a solution u : Omega -> R-n of the equation A del u + (del u)(t) A = G We also study the associated Dirichlet problem. (C) 2020 Elsevier Ltd. All ...
An accurate solution of the wave equation at a fluid-solid interface requires a correct implementation of the boundary condition. Boundary conditions at acousto-elastic interface require continuity of the normal component of particle velocity and traction, ...
Metallic aluminium plays a key role in our modern economy. Primary
metallic aluminium is produced by the transformation of aluminium
oxide using the Hall-Héroult industrial process. This process, which
requires enormous quantities of energy, consists in pe ...
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical ...
Essentially nonoscillatory (ENO) and weighted ENO (WENO) methods on equidistant Cartesian grids are widely used to solve partial differential equations with discontinuous solutions. The RBF-ENO method is highly flexible in terms of geometry, but its stenci ...
We propose a data-driven Model Order Reduction (MOR) technique, based on Artificial Neural Networks (ANNs), applicable to dynamical systems arising from Ordinary Differential Equations (ODEs) or time-dependent Partial Differential Equations (PDEs). Unlike ...
Eigenmode coalescence imparts remarkable properties to non-Hermitian time evolution, culminating in a purely non-Hermitian spectral degeneracy known as an exceptional point (EP). Here, we revisit time evolution around EPs, looking at both static and period ...
The basis of the discrete element method is to model masses interacting with each other through different forces and constraints. On each mass, the second law of Newton is applied to obtain a differential equation. From this equation and boundary condition ...
We are interested in the well posedness of quasilinear partial differential equations of order two. Motivated by the study of the Einstein equation in relativity theory, there are a number of works dedicated to the local well-posedness issue for the quasil ...
The modeling of the diffusion MRI signal from moving and deforming organs such as the heart is challenging due to significant motion and deformation of the imaged medium during the signal acquisition. Recently, a mathematical formulation of the Bloch-Torre ...