Long-Term Spectral Statistics for Voice Presentation Attack Detection
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this work, we propose different strategies for efficiently integrating an automated speech recognition module in the framework of a dialogue-based vocal system. The aim is the study of different ways leading to the improvement of the quality and robustn ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
As recently introduced, an HMM2 can be considered as a particular case of an HMM mixture in which the HMM emission probabilities (usually estimated through Gaussian mixtures or an artificial neural network) are modeled by state-dependent, feature-based HMM ...
HMM2 is a particular hidden Markov model where state emission probabilities of the temporal (primary) HMM are modeled through (secondary) state-dependent frequency-based HMMs [12]. As shown in [13], a secondary HMM can also be used to extract robust ASR fe ...
HMM2 is a particular hidden Markov model where state emission probabilities of the temporal (primary) HMM are modeled through (secondary) state-dependent frequency-based HMMs [12]. As shown in [13], a secondary HMM can also be used to extract robust ASR fe ...
Traditional speech recognition systems use Gaussian mixture models to obtain the likelihoods of individual phonemes, which are then used as state emission probabilities in hidden Markov models representing the words. In hybrid systems, the Gaussian mixture ...
As recently introduced, an HMM2 can be considered as a particular case of an HMM mixture in which the HMM emission probabilities (usually estimated through Gaussian mixtures or an artificial neural network) are modeled by state-dependent, feature-based HMM ...
In previous work, we presented a case study using an estimated pitch value as the conditioning variable in conditional Gaussians that showed the utility of hiding the pitch values in certain situations or in modeling it independently of the hidden state in ...
In previous work, we presented a case study using an estimated pitch value as the conditioning variable in conditional Gaussians that showed the utility of hiding the pitch values in certain situations or in modeling it independently of the hidden state in ...
This PhD thesis tries to understand how to analyse, decompose, model and transform the vocal identity of a human when seen through an automatic speaker recognition application. It starts with an introduction explaining the properties of the speech signal a ...