L-2-Betti Numbers Of Rigid C*-Tensor Categories And Discrete Quantum Groups
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Let G be a finite group and R be a commutative ring. The Mackey algebra μR(G) shares a lot of properties with the group algebra RG however, there are some differences. For example, the group algebra is a symmetric algebra and this is not always the case fo ...
We show that the first -Betti number of the duals of the free unitary quantum groups is one, and that all -Betti numbers vanish for the duals of the quantum automorphism groups of full matrix algebras. ...
Kan spectra provide a combinatorial model for the stable homotopy category. They were introduced by Dan Kan in 1963 under the name semisimplicial spectra. A Kan spectrum is similar to a pointed simplicial set, but it has simplices in negative degrees as we ...
Lax monoidal powerset-enriched monads yield a monoidal structure on the category of monoids in the Kleisli category of a monad. Exponentiable objects in this category are identified as those Kleisli monoids with algebraic structure. This result generalizes ...
This thesis is in the context of representation theory of finite groups. More specifically, it studies biset functors. In this thesis, I focus on two biset functors: the Burnside functor and the functor of p-permutation modules. For the Burnside functor we ...
Gaussian random fields are widely used as building blocks for modeling stochastic processes. This paper is concerned with the efficient representation of d-point correlations for such fields, which in turn enables the representation of more general stochas ...
In this paper we discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric analysis. While introducing very little change in an isogeometric code based on element-by-element quadrature and assembling, th ...
Gaussian random fields are widely used as building blocks for modeling stochastic processes. This paper is concerned with the efficient representation of d-point correlations for such fields, which in turn enables the representation of more general stochas ...
We exhibit sufficient conditions for a monoidal monad T on a monoidal category C to induce a monoidal structure on the Eilenberg-Moore category C^T that represents bimorphisms. The category of actions in C^T is then shown to be monadic over the base catego ...
Let X be a simplicial set. We construct a novel adjunction be- tween the categories RX of retractive spaces over X and ComodX+ of X+- comodules, then apply recent work on left-induced model category structures [5], [16] to establish the existence of a left ...