Development of a new simple fluorometric method for total N-nitrosamines analysis in water
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This publication summarizes my journey in the field of chemical oxidation processes for water treatment over the last 30+ years. Initially, the efficiency of the application of chemical oxidants for micropollutant abatement was assessed by the abatement of ...
Chemical oxidants including ozone (O3), chlorine (HOCl/OCl-) and chlorine dioxide (ClO2) are applied for disinfection of drinking water. To cope with water scarcity and the increased risks associated with the presence of micropollutants, water treatment sy ...
Human viruses are widespread in the water environment and pose a risk to human health. Wastewater effluents represent the main source of viruses discharge in the environment, leading to contamination of aquatic ecosystems. Viral pathogens can persist on th ...
For fifty years, heterogeneous photocatalysis has been considered as having potential to remove organic and microbiological pollutants from water under either artificial UV light or sunlight irradiation. However, after tens of thousands of published resear ...
Chlorine disinfection is commonly applied to inactivate pathogenic viruses in drinking water treatment plants. However, the role of water quality in chlorine disinfection of viruses has not been investigated thoughtfully. In this study, we investigated the ...
Water quality and its impacts on human and ecosystem health presents tremendous global challenges. While oxidative water treatment can solve many of these problems related to hygiene and micropollutants, identifying and predicting transformation products f ...
Ozonation of natural waters is typically associated with the formation of carbonyl compounds (aldehydes, ketones and ketoacids), a main class of organic disinfection byproducts (DBPs). However, the detection of carbonyl compounds in water and wastewater is ...
Chemical oxidation has been applied in municipal water treatment for more than a century, initially for disinfection. In the early decades, chlorine disinfection was adopted in the fight against waterborne disease. However, the oxidative properties of chlo ...
Clean water is essential for human survival, but access to safe drinking water remains a challenge in resource -limited regions. Herein, we explored a low-cost but effective solution for water potabilization using natural iron sources from soils along with ...
Ozonation of drinking water and wastewater is accompanied by the formation of disinfection byproducts (DBPs) such as low molecular weight aldehydes and ketones from the reactions of ozone with dissolved organic matter (DOM). By applying a recently develope ...