Plug&Play brain-computer interfaces for effective active and assisted living control
Publications associées (40)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Brain-Machine interfaces aim to create a direct neural link between user's brain and machines. This goal has pushed scientists to investigate a large spectrum of applications in the realm of assistive and rehabilitation technologies. However, despite great ...
Brain-computer interfaces measure the electricity produced by the brain and translate it into commands that are sent to a machine. However, it is often difficult to judge how quickly a user will be able to perform a task using a brain-computer interface wi ...
Brain-machine interfaces (BMIs) have been used to incorporate the user intention to trigger robotic devices by decoding movement onset from electroencephalography (EEG). Active neural participation is crucial to promote brain plasticity thus to enhance the ...
Transient electronics enabling devices to safely disappear in the environment can be applied not only in green electronics, but also in bioelectronic medicine. Neural implants able to degrade harmlessly inside the body eliminate the need for removal surger ...
The mathematical properties of high-dimensional (HD) spaces show remarkable agreement with behaviors controlled by the brain. Computing with HD vectors, referred to as “hypervectors,” is a brain-inspired alternative to computing with numbers. HD computing ...
A brain-machine interface (BMI) is about transforming neural activity into action and sensation into perception (Figure 1). In a BMI system, neural signals recorded from the brain are fed into a decoding algorithm that translates these signals into motor o ...
Brain–computer interfaces (BCI) (also referred to as brain–machine interfaces; BMI) are, by definition, an interface between the human brain and a technological application. Brain activity for interpretation by the BCI can be acquired with either invasive ...
The mathematical properties of high-dimensional (HD) spaces show remarkable agreement with behaviors controlled by the brain. Computing with HD vectors, referred to as "hypervectors," is a brain-inspired alternative to computing with numbers. HD computing ...
Human brain is organized by a large number of functionally correlated but spatially distributed cortical neurons. Cognitive processes are usually associated with dynamic interactions among multiple brain regions. Therefore, the understanding of brain funct ...
Human studies on cognitive control processes rely on tasks involving sudden-onset stimuli, which allow the analysis of these neural imprints to be time-locked and relative to the stimuli onset. Human perceptual decisions, however, comprise continuous proce ...