Tagged unionIn computer science, a tagged union, also called a variant, variant record, choice type, discriminated union, disjoint union, sum type or coproduct, is a data structure used to hold a value that could take on several different, but fixed, types. Only one of the types can be in use at any one time, and a tag field explicitly indicates which one is in use. It can be thought of as a type that has several "cases", each of which should be handled correctly when that type is manipulated.
Programmation fonctionnelleLa programmation fonctionnelle est un paradigme de programmation de type déclaratif qui considère le calcul en tant qu'évaluation de fonctions mathématiques. Comme le changement d'état et la mutation des données ne peuvent pas être représentés par des évaluations de fonctions la programmation fonctionnelle ne les admet pas, au contraire elle met en avant l'application des fonctions, contrairement au modèle de programmation impérative qui met en avant les changements d'état.
Union typeIn computer science, a union is a value that may have any of several representations or formats within the same position in memory; that consists of a variable that may hold such a data structure. Some programming languages support special data types, called union types, to describe such values and variables. In other words, a union type definition will specify which of a number of permitted primitive types may be stored in its instances, e.g., "float or long integer".
Sémantique de KripkeEn logique mathématique, la sémantique de Kripke est une sémantique formelle utilisée pour les logiques non-classiques comme la logique intuitionniste et certaines logiques modales. Elle a été développée à la fin des années 1950 et début des années 1960 par Saul Kripke et est fondée sur la théorie des mondes possibles. Un cadre de Kripke est un couple (W, R), où W est un ensemble de mondes appelés parfois mondes possibles et où R est une relation binaire sur W. L'ensemble W s'appelle parfois l'univers des mondes possibles.
Top typeIn mathematical logic and computer science, some type theories and type systems include a top type that is commonly denoted with top or the symbol ⊤. The top type is sometimes called also universal type, or universal supertype as all other types in the type system of interest are subtypes of it, and in most cases, it contains every possible object of the type system. It is in contrast with the bottom type, or the universal subtype, which every other type is supertype of and it is often that the type contains no members at all.
Lambda cubethumb|Le lambda-cube. Initialement proposé par Henk Barendregt, le -cube permet de visualiser les différentes dimensions pour lesquelles le calcul des constructions apporte une généralisation par rapport au lambda-calcul simplement typé où un terme ne peut dépendre que d'un autre terme. Chaque axe représente une nouvelle forme d'abstraction : Terme dépendant de type : le polymorphisme ; Type dépendant de type : présence d'opérateurs de types ; Type dépendant de terme. Catégorie:Calculabilité Catégorie:Théor
Type unitéUn type unité est un type mathématique avec une seule valeur. L'ensemble associé avec le type unité peut être n'importe quel ensemble singleton. Il y a un isomorphisme entre deux tels ensembles, donc on parle souvent « du » type unité et on ignore les détails de cette valeur. On peut aussi considérer le type unité comme un 0-uplet, c’est-à-dire un produit cartésien de zéro type. En théorie des catégories, le type unité est un objet terminal dans beaucoup de catégories basées sur les ensembles.
Signature de typeEn programmation informatique, la signature de type définit les types de données acceptables pour une fonction ou une méthode. Une signature inclut au moins le nom de la fonction et le nombre de paramètres. Dans certains langages, elle peut aussi spécifier le type de la valeur de retour et les types de ses paramètres. Une signature de type en Haskell est généralement écrite dans le format suivant : nomDeFonction :: typeArgument1 -> typeArgument2 -> ... -> typeArgumentN Notez que la sortie finale peut être considérée comme un argument.
Normal form (abstract rewriting)In abstract rewriting, an object is in normal form if it cannot be rewritten any further, i.e. it is irreducible. Depending on the rewriting system, an object may rewrite to several normal forms or none at all. Many properties of rewriting systems relate to normal forms. Stated formally, if (A,→) is an abstract rewriting system, x∈A is in normal form if no y∈A exists such that x→y, i.e. x is an irreducible term. An object a is weakly normalizing if there exists at least one particular sequence of rewrites starting from a that eventually yields a normal form.
Free variables and bound variablesIn mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a variable may be said to be either free or bound. The terms are opposites. A free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not a parameter of this or any container expression. Some older books use the terms real variable and apparent variable for free variable and bound variable, respectively.