Neuronal ensembleA neuronal ensemble is a population of nervous system cells (or cultured neurons) involved in a particular neural computation. The concept of neuronal ensemble dates back to the work of Charles Sherrington who described the functioning of the CNS as the system of reflex arcs, each composed of interconnected excitatory and inhibitory neurons. In Sherrington's scheme, α-motoneurons are the final common path of a number of neural circuits of different complexity: motoneurons integrate a large number of inputs and send their final output to muscles.
Extreme learning machineEn apprentissage automatique, le terme extreme learning machine (machine à apprentissage extrême) fait référence à un type de réseau de neurones. Sa spécificité est de n'avoir qu'une seule couche de nœuds cachés, où les poids des entrées de connexion de nœuds cachés sont répartis au hasard et jamais mis à jour. Ces poids entre les nœuds cachés d'entrée et les sorties sont appris en une seule étape, ce qui revient essentiellement à l'apprentissage d'un modèle linéaire.
Delta ruleIn machine learning, the delta rule is a gradient descent learning rule for updating the weights of the inputs to artificial neurons in a single-layer neural network. It is a special case of the more general backpropagation algorithm. For a neuron with activation function , the delta rule for neuron 's th weight is given by where It holds that and . The delta rule is commonly stated in simplified form for a neuron with a linear activation function as While the delta rule is similar to the perceptron's update rule, the derivation is different.
Action selectionAction selection is a way of characterizing the most basic problem of intelligent systems: what to do next. In artificial intelligence and computational cognitive science, "the action selection problem" is typically associated with intelligent agents and animats—artificial systems that exhibit complex behaviour in an agent environment. The term is also sometimes used in ethology or animal behavior. One problem for understanding action selection is determining the level of abstraction used for specifying an "act".
Règle d'associationDans le domaine du data mining la recherche des règles d'association est une méthode populaire étudiée d'une manière approfondie dont le but est de découvrir des relations ayant un intérêt pour le statisticien entre deux ou plusieurs variables stockées dans de très importantes bases de données. Piatetsky-Shapiro présentent des règles d'association extrêmement fortes découvertes dans des bases de données en utilisant différentes mesures d’intérêt. En se basant sur le concept de relations fortes, Rakesh Agrawal et son équipeR.
BrainbowBrainbow is a process by which individual neurons in the brain can be distinguished from neighboring neurons using fluorescent proteins. By randomly expressing different ratios of red, green, and blue derivatives of green fluorescent protein in individual neurons, it is possible to flag each neuron with a distinctive color. This process has been a major contribution to the field of neural connectomics. The technique was originally developed in 2007 by a team led by Jeff W. Lichtman and Joshua R.
Knowledge modelingKnowledge modeling is a process of creating a computer interpretable model of knowledge or standard specifications about a kind of process and/or about a kind of facility or product. The resulting knowledge model can only be computer interpretable when it is expressed in some knowledge representation language or data structure that enables the knowledge to be interpreted by software and to be stored in a database or data exchange file.