Publication

Computational aspects of correlation power analysis

Résumé

Since the discovery of simple power attacks, the cryptographic research community has developed significantly more advanced attack methods. The idea behind most algorithms remains to perform a statistical analysis by correlating the power trace obtained when executing a cryptographic primitive to a key-dependent guess. With the advancements of cryptographic countermeasures, it is not uncommon that sophisticated (higher order) power attacks require computation on many millions of power traces to find the desired correlation. In this paper, we study the computational aspects of calculating the most widely used correlation coefficient: the Pearson product-moment correlation coefficient. We study various time-memory trade-off techniques which apply specifically to the cryptologic setting and present methods to extend already completed computations using incremental versions. Moreover, we show how this technique can be applied to second-order attacks, reducing the attack cost significantly when adding new traces to an existing dataset. We also present methods which allow one to split the potentially huge trace set into smaller, more manageable chunks to reduce the memory requirements. Our parallel implementation of these techniques highlights the benefits of this approach as it allows efficient computations on power measurements consisting of hundreds of gigabytes on a single modern workstation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (35)
Pearson correlation coefficient
In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.
Analyse de consommation (cryptographie)
En cryptanalyse de matériel cryptographique, l'analyse de consommation (en anglais, differential power analysis ou DPA) est l'étude des courants et tensions entrants et sortants d'un circuit dans le but de découvrir des informations secrètes comme la clé de chiffrement. Certaines opérations, plus coûteuses, augmentent la consommation électrique du circuit, notamment par l'utilisation de plus de composants (analogiques ou logiques). Cette analyse des variations et des pics permet de tirer des informations précieuses pour le cryptanalyste.
Corrélation (statistiques)
En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
Afficher plus
Publications associées (75)

Quantitative T2 Mapping of Acute Pancreatitis

Tom Hilbert, Giulia Piazza

Background: Quantification of the T2 signal by means of T2 mapping in acute pancreatitis (AP) has the potential to quantify the parenchymal edema. Quantitative T2 mapping may overcome the limitations of previously reported scoring systems for reliable asse ...
Hoboken2024

Towards a multiscale point cloud structural similarity metric

Touradj Ebrahimi

Point clouds are effective data structures for the rep- resentation of three-dimensional media and hence adopted in a wide range of practical applications. In many cases, the portrayed data is expected to be visualized by humans. After acquisition, point c ...
2023

Saliency prediction in 360° architectural scenes: Performance and impact of daylight variations

Marilyne Andersen, Sabine Süsstrunk, Caroline Karmann, Bahar Aydemir, Kynthia Chamilothori, Seungryong Kim

Saliency models are image-based prediction models that estimate human visual attention. Such models, when applied to architectural spaces, could pave the way for design decisions where visual attention is taken into account. In this study, we tested the pe ...
2023
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.