Diffusion Adaptation Over Networks Under Imperfect Information Exchange and Non-Stationary Data
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
In inverse problems, the task is to reconstruct an unknown signal from its possibly noise-corrupted measurements. Penalized-likelihood-based estimation and Bayesian estimation are two powerful statistical paradigms for the resolution of such problems. They ...
Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network ...
Decentralized storage networks offer services with intriguing possibilities to reduce inequalities in an extremely centralized market. Fair distribution of rewards, however, is still a persistent problem in the current generation of decentralized applicati ...
This paper presents a comparison of machine learning (ML) methods used for three-dimensional localization of partial discharges (PD) in a power transformer tank. The study examines ML and deep learning (DL) methods, ranging from support vector machines (SV ...
Water distribution systems (WDSs) are complex networks with numerous interconnected junctions and pipes. The robustness and reliability of these systems are critically dependent on their network structure, necessitating detailed analysis for proactive leak ...
Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...
Offshore wind farms (OWFs) with modular multilevel converter high-voltage dc (MMC-HVdc) have become an important form of renewable energy utilization. However, if a fault occurs at the tie line between the MMC and the OWF, the fault steady-state current at ...
Dynamic downscaling of atmospheric forcing data to the hectometer resolution has shown increases in accuracy for landsurface models, but at great computational cost. Here we present a validation of a novel intermediate complexity atmospheric model, HICAR, ...