On the Learning Behavior of Adaptive Networks - Part I: Transient Analysis
Publications associées (66)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Detection of curvilinear structures has long been of interest due to its wide range of applications. Large amounts of imaging data could be readily used in many fields, but it is practically not possible to analyze them manually. Hence, the need for automa ...
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
We study the problem of inverse reinforcement learning (IRL) with the added twist that the learner is assisted by a helpful teacher. More formally, we tackle the following algorithmic question: How could a teacher provide an informative sequence of demonst ...
Meta-learning aims to improve efficiency of learning new tasks by exploiting the inductive biases obtained from related tasks. Previous works consider centralized or federated architectures that rely on central processors, whereas, in this paper, we propos ...
EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP2021
A smart campus provides students who are geographically scattered with online tools to get access to learning resources and laboratories. Although these remote laboratories have the potential and capabilities to implement different learning experiments, mo ...
This work studies the learning abilities of agents sharing partial beliefs over social networks. The agents observe data that could have risen from one of several hypotheses and interact locally to decide whether the observations they are receiving have ri ...
Whether it occurs in artificial or biological substrates, {\it learning} is a {distributed} phenomenon in at least two aspects. First, meaningful data and experiences are rarely found in one location, hence {\it learners} have a strong incentive to work to ...
For decades, neuroscientists and psychologists have observed that animal performance on spatial navigation tasks suggests an internal learned map of the environment. More recently, map-based (or model-based) reinforcement learning has become a highly activ ...
We study the problem of inverse reinforcement learning (IRL) with the added twist that the learner is assisted by a helpful teacher. More formally, we tackle the following algorithmic question: How could a teacher provide an informative sequence of demonst ...
A medical student learning to perform a laparoscopic procedure or a recently paralyzed user of a powered wheelchair must learn to operate machinery via interfaces that translate their actions into commands for an external device. Since the user’s actions a ...