Large deviations analysis of adaptive distributed detection
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In inverse problems, the task is to reconstruct an unknown signal from its possibly noise-corrupted measurements. Penalized-likelihood-based estimation and Bayesian estimation are two powerful statistical paradigms for the resolution of such problems. They ...
Beliefs inform the behaviour of forward-thinking agents in complex environments. Recently, sequential Bayesian inference has emerged as a mechanism to study belief formation among agents adapting to dynamical conditions. However, we lack critical theory to ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
In 1948, Claude Shannon laid the foundations of information theory, which grew out of a study to find the ultimate limits of source compression, and of reliable communication. Since then, information theory has proved itself not only as a quest to find the ...
A multi-agent system consists of a collection of decision-making or learning agents subjected to streaming observations from some real-world phenomenon. The goal of the system is to solve some global learning or optimization problem in a distributed or dec ...
In this article, we consider decentralized optimization problems where agents have individual cost functions to minimize subject to subspace constraints that require the minimizers across the network to lie in low-dimensional subspaces. This constrained fo ...
In this work we consider solutions to stochastic partial differential equations with transport noise, which are known to converge, in a suitable scaling limit, to solution of the corresponding deterministic PDE with an additional viscosity term. Large devi ...
Decentralized storage networks offer services with intriguing possibilities to reduce inequalities in an extremely centralized market. Fair distribution of rewards, however, is still a persistent problem in the current generation of decentralized applicati ...
This paper presents the experimental validation of a linear recursive state estimation (SE) process for hybrid AC/DC microgrids proposed in the authors' previous work. The SE uses a unified and linear measurement model that relies on the use of synchronize ...
This work addresses the problem of sharing partial information within social learning strategies. In social learning, agents solve a distributed multiple hypothesis testing problem by performing two operations at each instant: first, agents incorporate inf ...