Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this work, a diffusion-type algorithm is proposed to solve multitask estimation problems where each cluster of nodes is interested in estimating its own optimum parameter vector in a distributed manner. The approach relies on minimizing a global mean-square error criterion regularized by a term that promotes piecewise constant transitions in the parameter vector entries estimated by neighboring clusters. We provide some results on the mean and mean-square-error convergence. Simulations are conducted to illustrate the effectiveness of the strategy.
Nicolas Henri Bernard Flammarion, Scott William Pesme