Performance limits of single-agent and multi-agent sub-gradient stochastic learning
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper we present the application of the interior-point decomposition (IPD) method, which was originally formulated for stochastic programming, to optimization problems involving multiple agents that are coupled through constraints and objectives. I ...
Part I of this paper examined the mean-square stability and convergence of the learning process of distributed strategies over graphs. The results identified conditions on the network topology, utilities, and data in order to ensure stability; the results ...
This thesis studies the automatic design and optimization of high-performing robust controllers for mobile robots using exclusively on-board resources. Due to the often large parameter space and noisy performance metrics, this constitutes an expensive opti ...
We propose a way to estimate the value function of a convex proximal minimization problem. The scheme constructs a convex set within which the optimizer resides and iteratively refines the set every time that the value function is sampled, namely every tim ...
This paper presents a coordinated primal-dual interior point (PDIP) method for solving structured convex linear and quadratic programs (LP-QP) in a distributed man- ner. The considered class of problems represents a multi-agent setting, where the aggregate ...
This work studies the problem of inferring from streaming data whether an agent is directly influenced by another agent over an adaptive network of interacting agents. Agent i influences agent j if they are connected, and if agent j uses the information fr ...
We consider the problem of dictionary learning over large scale models, where the model parameters are distributed over a multi-agent network. We demonstrate that the dual optimization problem for inference is better conditioned than the primal problem and ...
In reinforcement learning, agents learn by performing actions and observing their outcomes. Sometimes, it is desirable for a human operator to \textit{interrupt} an agent in order to prevent dangerous situations from happening. Yet, as part of their learni ...
Natural and artificial societies often divide the workload between specialized members. For example, an ant worker may preferentially perform one of many tasks such as brood rearing, foraging and nest maintenance. A robot from a rescue team may specialize ...
There are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously by networked agents. In this paper, we formulate an online multitask learning problem where node ...