Learning by networked agents under partial information
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Reinforcement learning (RL) has shown promising results for real-time control systems, including the domain of plasma magnetic control. However, there are still significant drawbacks compared to traditional feedback control approaches for magnetic confinem ...
Computer simulations are often used as support material for science education, as they can engage students through inquiry-based learning, promote their active interaction in the experimentation phase, and help them visualize abstract concepts. For instanc ...
Agent-based simulations have been widely applied in many disciplines, by scientists and engineers alike. Scientists use agent-based simulations to tackle global problems, including alleviating poverty, reducing violence, and predicting the impact of pandem ...
Beliefs inform the behaviour of forward-thinking agents in complex environments. Recently, sequential Bayesian inference has emerged as a mechanism to study belief formation among agents adapting to dynamical conditions. However, we lack critical theory to ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
A multi-agent system consists of a collection of decision-making or learning agents subjected to streaming observations from some real-world phenomenon. The goal of the system is to solve some global learning or optimization problem in a distributed or dec ...
As the field of ethology advances, especially over the past two decades, the role of animal-robot interaction tools has increasingly become essential. This importance arises from the need for controlled, repetitive, repeatable, and long-duration experiment ...
This article reviews significant advances in networked signal and information processing (SIP), which have enabled in the last 25 years extending decision making and inference, optimization, control, and learning to the increasingly ubiquitous environments ...
The adaptive social learning paradigm helps model how networked agents are able to form opinions on a state of nature and track its drifts in a changing environment. In this framework, the agents repeatedly update their beliefs based on private observation ...
We generalize the bulk-synchronous parallel (BSP) processing model to make it better support agent-based simulations. Such simulations frequently exhibit hierarchical structure in their communication patterns which can be exploited to improve performance. ...