Multi-Modal Mean-Fields via Cardinality-Based Clamping
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (GLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties ...
Methods to improve noise robustness of speech recognition systems often result in degradation of recognition performance for clean speech. Recently proposed Phase AutoCorrelation (PAC) \cite{ikbal03,ikbal03a} based features, showing noticeable improvement ...
This paper investigates the use of features based on posterior probabilities of subword units such as phonemes. These features are typically transformed when used as inputs for a hidden Markov model with mixture of Gaussians as emission distribution (HMM/G ...
Methods to improve noise robustness of speech recognition systems often result in degradation of recognition performance for clean speech. Recently proposed Phase AutoCorrelation (PAC) \cite{ikbal03,ikbal03a} based features, showing noticeable improvement ...
A theoretical model describing the attachment and cytoskeletal coupling of microspheres to the dorsal surface of motile cells was developed. Integral membrane receptors beneath a ligand-coated microsphere are allowed to be either free, attached to the micr ...
We extend a basic result of Huber's on least favorable distributions to the setting of conditional inference, using an approach based on the notion of log-Gâteaux differentiation and perturbed models. Whereas Huber considered intervals of fixed width for l ...
This paper proposes the use of Gaussian Mixture Models to estimate conditional probability density functions. A conditional Gaussian Mixture Model has been compared to the geostatistical method of Sequential Gaussian Simulations. The data set used is a par ...
Variational methods have proved popular and effective for inference and learning in intractable graphical models. An attractive feature of the approaches based on the Kullback-Leibler divergence is a rigorous lower bound on the normalization constants in u ...
We study two encodings of the asynchronous pi-calculus with input-guarded choice into its choice-free fragment. One encoding is divergence-free, but refines the atomic commitment of choice into gradual commitment. The other preserves atomicity, but introdu ...