Composition of the low seismic velocity E ′ layer at the top of Earth's core
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The heat flux across the core-mantle boundary (Q(CMB)) is the key parameter to understand the Earth's thermal history and evolution. Mineralogical constraints of the Q(CMB) require deciphering contributions of the lattice and radiative components to the th ...
Silicon and oxygen are potential light elements in Earth's core because their stronger affinity to metal observed with increasing temperature posits that significant amounts of both can be incorporated into the core. It was proposed that an Fe-Si-O liquid ...
Both seismic observations of dense low shear velocity regions and models of magma ocean crystallization and mantle dynamics support enrichment of iron in Earth’s lowermost mantle. Physical properties of iron-rich lower mantle heterogeneities in the modern ...
Magnesium partitioning between metal and silicate was experimentally investigated between 34 and 138GPa, 3,500 and 5,450K using laser-heated diamond anvil cells. The 22 measurements are combined with previously published data (total of 49 measurements) to ...
Strain localization and the development of ductile shear zones in the middle and lower crust play major roles in lithosphere dynamics. Geophysical imaging of ductile shear zones is an issue for ore geology, for the understanding of the lithosphere rheology ...
Recognizing existing materials that can act as proxies for Earth's building blocks, and understanding the accretionary pathway taken during Earth's growth, persist as outstanding issues in need of resolution. In Mahan, Siebert, Blanchard, Badro, et al. (20 ...
Identifying extant materials that act as compositional proxies for Earth is key to understanding its accretion. Copper and sulfur are both moderately volatile elements; however, they display different geochemical behavior (e.g., phase affinities). Thus, in ...
Planetesimal were the first planetary objects to form in the solar system, which later grew to make the proto-planets. Most of these bodies were differentiated as a result of internal heating. Several differentiated bodies have, then, been accreted followi ...
Seismic imaging of the internal Earth has emphasized the inhomogeneity of its mantle. This interface layer of nearly 3000 km surrounding the central metallic core conducts heat released from the latter, which played a significant role in shaping the actual ...
Recent palaeomagnetic observations(1) report the existence of a magnetic field on Earth that is at least 3.45 billion years old. Compositional buoyancy caused by inner-core growth(2) is the primary driver of Earth's present-day geodynamo(3-5), but the inne ...