A coordinator-driven communication reduction scheme for distributed optimization using the projected gradient method
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper considers the problem of resilient distributed optimization and stochastic learning in a server-based architecture. The system comprises a server and multiple agents, where each agent has its own local cost function. The agents collaborate with ...
This article reviews significant advances in networked signal and information processing (SIP), which have enabled in the last 25 years extending decision making and inference, optimization, control, and learning to the increasingly ubiquitous environments ...
A multi-agent system consists of a collection of decision-making or learning agents subjected to streaming observations from some real-world phenomenon. The goal of the system is to solve some global learning or optimization problem in a distributed or dec ...
One of the main goal of Artificial Intelligence is to develop models capable of providing valuable predictions in real-world environments. In particular, Machine Learning (ML) seeks to design such models by learning from examples coming from this same envi ...
In this paper, we introduce a new class of potential fields, i.e., meta navigation functions (MNFs) to coordinate multi-agent systems. Thanks to the MNF formulation, agents can contribute to each other's coordination via partial and/or total associations, ...
This work studies multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) function coupling all agents. This scenario arises in many machine learning and engineering ...
In this work, we revisit a classical incremental implementation of the primal-descent dual-ascent gradient method used for the solution of equality constrained optimization problems. We provide a short proof that establishes the linear (exponential) conver ...
It has been experimentally observed that the efficiency of distributed training with stochastic gradient (SGD) depends decisively on the batch size and—in asynchronous implementations—on the gradient staleness. Especially, it has been observed that the spe ...
This paper develops a methodology for regret minimization with stochastic first-order oracle feedback in online, constrained, non-smooth, non-convex problems. In this setting, the minimization of external regret is beyond reach for first-order methods, and ...
We consider the problem of making a multi-agent system (MAS) resilient to Byzantine failures through replication. We consider a very general model of MAS, where randomness can be involved in the behavior of each agent. We propose the first universal scheme ...